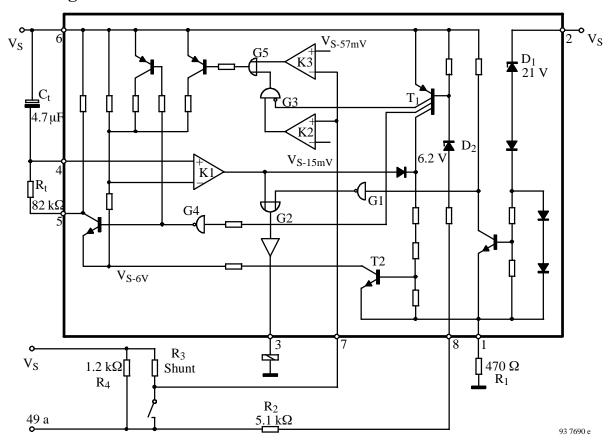
Hazard Warning and Car Direction Indicator

Description

Based on TEMIC's expertise in automotive flashers in bipolar technology, the U6432B is an improvement of the well known U6043B.

Features


- Temperature and voltage compensated frequency
- Warning indication of lamp failure by means of frequency doubling only in direction mode
- Voltage dependence of the car indicator lamps also compensated for lamp failure
- Relay output with high current carrying capacity and low saturation voltage
- Load-dump protection

- Lamp load $\ge 1 \text{ W}$
- RF protected
- Extremely low stand by current of 10 μA

Benefits

- Damage and interference protection with a minimum of external components
- Low stand-by current allows battery operation

Block Diagram

Rev. A1: 07.08.1995 Preliminary Information

Package Options

8-pin dual inline plastic

8-pin SO plastic

Circuit Description

The application circuit shows the operation of this IC as a car direction indicator signal generator. The flashing frequency is determined by the components R_t and C_t , and the frequency can be calculated from

$$f_1 \sim \frac{1}{R_t \cdot C_t \cdot 1.5}$$
 (Hz)

where f_1 is the frequency in normal flashing operation (basic frequency). The control frequency, f_2 , is typically 2.2 times the value of f_1 and is the frequency in the case of lamp failure. The bright periods for f_1 and f_2 are internally set in the IC and are 50% for f_1 and 40% for f_2 .

The resistors R_1 and R_2 are needed to protect the circuit against possible damage. An integrated protection circuit, together with these external resistors, limits the impulse current in the integrated circuit.

Protection in the case of battery reversal: The resistors R_1 , R_2 and the relay coil limit the currents and the integrated circuit would not be damaged. To achieve a protection for continuous battery reversal, resistor R_1 should be capable of 30 mA (0.5 W type).

A short circuit between indicator lamp (49a) and ground (31) can give rise to a voltage drop of about 4 V across the measuring resistance R_3 . In this case, the integrated circuit would not be damaged.

The use of the application circuit (see figure 1) ensures damage and interference protection consistent with VDE 0839 and load dump.

Control signal threshold 1 (49 mV comparator)

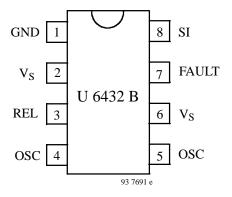
The detection point for lamp failure can be calculated from the control signal threshold, typically 49 mV with $V_S=12$ V. With a measuring resistance of $R_3=18$ m Ω , the frequency changeover is reached at a lamp load of 21 W +11.4 W. The variation of the control signal threshold supply voltage takes into account the PTC characteristic of filament lamps.

Control signal threshold 2 (15 mV comparator)

A voltage drop at the shunt resistor R_3 between 49 mV and 15 mV let the flasher work in frequency doubling mode.

If the voltage drop falls of $V_{R3MAX}\!=\!15$ mV the frequency doubling is disabled.

This can be achieved either with a switch which by-passes the shunt resistor (e.g. a special hazard warning switch) or with a small lamp load.


The arrangement of the supply connections to Pin 2 and 6 must ensure that, on the connection PCB, the layer resistance from V_S to Pin 6 is lower than the one to Pin 2.

Flasher operation starts with a lamp load of $P_L \ge 1$ W.

Rev. A1: 07.08.1995

TELEFUNKEN Semiconductors

Pin Out

Pin Description

Pin	Symbol	Function		
1	GND	IC ground		
2	V_{S}	Supply voltage		
3	REL	Relay driver		
4	OSC	Oscillator		
5	OSC	Oscillator		
6	V_{S}	Supply voltage		
7	FAULT	Lamp failure detection		
8	SI	Start input (49a)		

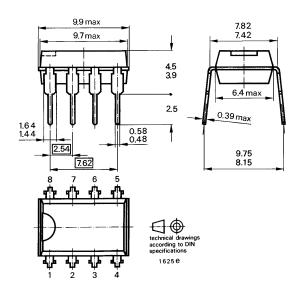
Absolute Maximum Ratings

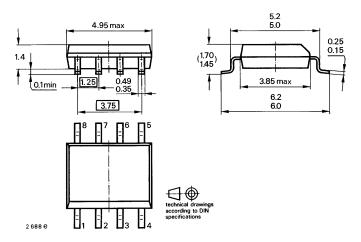
Reference point pin 1

Parameters		Symbol	Value	Unit
Supply voltage	Pin 2, 6	V _S 18		V
Surge forward current				
$t_p = 0.1 \text{ ms}$	Pin 2, 6		1.5	A
$t_p = 300 \text{ ms}$	Pin 2, 6	I_{FSM}	1.0	A
$t_p = 300 \text{ ms}$	Pin 8		30.0	mA
Output current	Pin 3	I _O	0.3	A
Power dissipation				
$T_{amb} = 95^{\circ}C$	DIP 8		420	
	SO 8	P _{tot}	340	mW
$T_{amb} = 60^{\circ}C$	DIP 8		690	
	SO 8		560	
Junction temperature		T_{j}	150	°C
Ambient temperature range		T _{amb}	-40 to +105	°C
Storage temperature range		T _{stg}	-55 to +125	°C

Rev. A1: **07.0**8.1995

U6432B-FP


Electrical Characteristics


 $T_{amb}=25\,^{\circ}\text{C}$; typical values under normal operation in application circuit figure 1, $V_S=12~V$ (Pin 2, 6); reference point ground (-31), unless otherwise specified.

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Supply voltage range	Pin 2, 6	Vs	9		16.5	V
Supply current, dark phase	Pin 2, 6	Is		4.5	8	mA
Supply current, stand-by	Pin 2, 6	I_{S}			10	μΑ
Supply current, bright phase	Pin 2, 6	I_{S}		7.0	11	mA
Relay output, saturation voltage	$I_O = 150 \text{ mA},$ $V_S = 9 \text{ V} \qquad \text{Pin } 3$	Vo			1.0	V
Relay output reverse current	Pin 3	I _O			0.1	mA
Relay coil resistance		R_{L}	60			Ω
Start delay	first bright phase	t _{on}			10	ms
Frequency determining resistor		R _t	6.8		510	kΩ
Frequency determining capacitor		Ct			47	μF
Frequency tolerance normal flashing, basic frequency f_1 not including the tolerances of the extension and components R_t and C_t		Δf_1	-5		+5	%
Bright period	basic frequency f_1 , $V_S = 9-15 \text{ V}$	Δf_1	47		53	%
Bright period	basic frequency f_1 , $V_S = 9-15 \text{ V}$	Δf_1	47		53	%
Bright period	control frequency f_2 , $V_S = 9-15 \text{ V}$	Δf_2	37		45	%
Frequency increase	lamp failure, V _S = 9-15 V	f ₂	2.15 f ₁		2.3	f_1
Control signal threshold 1	$V_S = 15 V$ $V_S = 9 V$ $V_S = 12 V Pin 7$	V _{R3}	50 43 47	53 45 49	57 47 51	mV
Control signal threshold 2		V _{R3}			15	mV
Resistance between 49a to ground for standby		R _p			5	kΩ
Lamp load		P_{L}	1			W

TELEFUNKEN Semiconductors

Dimensions in mm

TEMIC

U6432B-FP

TELEFUNKEN Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or

unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423